Room temperature precipitation in quenched Al - Cu - Mg alloys : a model for the reaction kinetics and yield strength development
نویسنده
چکیده
The microstructural evolution during low temperature ageing of two commercial purity alloys (Al1.2Cu-1.2Mg-0.2Mn and Al-1.9Cu-1.6Mg-0.2Mn at.%) was investigated. The initial stage of hardening in these alloys is very rapid, with the alloys nearly doubling in hardness during 20 h ageing at room temperature. The microstructural evolution during this stage of hardening was investigated using differential scanning calorimetry (DSC), isothermal calorimetry and threedimensional atom probe analysis (3DAP). It is found that during the hardening a substantial exothermic heat evolution occurs and that the only microstructural change involves the formation of Cu-Mg co-clusters. The kinetics of cluster formation is analysed and the magnitude of the hardening is discussed on the basis of a model incorporating solid solution hardening and modulus hardening originating from the difference in modulus between Al and clusters. ‖ Author for correspondence: Tel: 023 80595094; Fax: 023 80593016; Email:[email protected]
منابع مشابه
Reply to the Comments on “ Room - temperature precipitation in quenched Al - Cu - Mg alloys : a model for the reaction kinetics and yield - strength development . ”
Our recent work on Al-Cu-Mg based alloys with Cu:Mg ratio close to unity showed that the rapid hardening at room temperature and the substantial heat evolution arise from the formation of Cu-Mg co-clusters. Here, it is shown that the measured enthalpy of formation of clusters (~0.3eV per Mg atom) is in reasonable agreement with expectations based on the similarity with Mg-vacancy clusters. The ...
متن کاملTHERMAL ANALYSIS AND KINETICS OF THE PRECIPITATION IN WROUGHT Al-Mg, Al-Mg-ScAND Al-Mg-Sc-Me (Me=Zr, Ti) ALLOYS
Precipitation behaviour of wrought Al-6Mg alloys with ternary scandium and quaternary zirconium and titanium has been studied. Hardness measurements and resistivity studies are employed to assess the precipitation behaviour of scandium doped Al-6Mg alloy without or with quaternary additions of zirconium and titanium. Further, the kinetics of precipitations are studied by differential scanning c...
متن کاملQuench Rate Effects on the Natural Aging Behavior of 7xxx Al-mg-zn-cu Aluminum Alloys
The effect of quench rate on the natural aging behavior was examined using microhardness, conductivity and the differential scanning calorimeter. The data indicated that GPZ formed during extended natural aging of 7075, while extended aging of 7050 resulted in the precipitation of η’. Introduction The aluminum alloy system Al-Zn-Mg-Cu is the mainstay of aluminum alloys used in the aerospace ind...
متن کاملA Model for Precipitation Kinetics and Strengthening in Al-Cu-Mg Alloys
A physically-based numerical model is developed to predict the microstructural evolution and strengthening in Al-Cu-Mg alloys during isothermal treatments. The modelling of the formation kinetics of the precipitates is based on the Kampmann and Wagner model. The strengthening by the shearable Cu:Mg co-clusters is modelled on the basis of modulus strengthening mechanism and the strengthening by ...
متن کاملMicrostructure and strength modelling of Al–Cu–Mg alloys during non-isothermal treatments Part 1 – Controlled heating and cooling
A model is developed to predict the precipitation kinetics and strengthening in Al–Cu–Mg alloys during non-isothermal treatments consisting of controlled heating and cooling. The prediction of the precipitation kinetics is based on the Kampmann and Wagner model. The precipitation strengthening by the shearable Cu–Mg co-clusters is modelled on the basis of the modulus strengthening mechanism and...
متن کامل